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speed of 91.8 m.sec -~ (component along the neutron 
direction) at the examined region was used, and the 
transmission cross section was studied for the two cases 
where the specimen motion was parallel and anti- 
parallel to the neutron velocity. Monochromatic neu- 
trons in this wavelength region were obtained by Bragg 
reflection from a mica crystal, polycrystalline beryllium 
being used to filter out the higher order reflected neu- 
trons. 

Fig.6 shows the measured transmission cross sec- 
tions for the stationary and moving specimen cases 
along with the wavelength positions where the cut-off 
is to be expected. Agreement between experiment and 
calculation is again evident. It is significant that the 
magnitude of the cross section discontinuity is changed 
in the expected manner with specimen motion. Thus 
it is demonstrated that the cut-off wavelength can be 

easily shifted by suitable specimen motion and this can 
be exploited in producing window filters of adjustable 
width. This has been suggested independently by 
Iyengar (1964). In considering the case of polycrystal- 
line specimen motion perpendicular to the incident 
neutron velocity, no shift in the cut-off edge is to be 
expected in first approximation. It is interesting that 
this case changes the back-reflected Debye-Scherrer 
circular rings into elliptical rings. 
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A consistent dynamical theory of X-rays is developed which takes into account in explicit form the 
processes of Thomson scattering, photoelectric absorption, and Compton scattering as well as inelastic 
scattering of X-rays by phonons. Special attention is paid to analysis of the role played by lattice vibra- 
tions and by temperature. Owing to inelastic scattering by phonons, the temperature dependence of 
the coefficients of dynamical equations is not determined by Debye-Waller factors but has a more 
complicated behaviour. A detailed analysis is given of the influence of lattice vibrations on the effect 
of anomalous transmission. 

1. Introduction 

In recent papers by the present authors (Afanas'ev & 
Kagan, 1965; Kagan & Afanas'ev, 1965, 1966) a dy- 
namical theory has been developed which describes the 
motion of y-quanta and neutrons in a regular crystal 
when the interaction of the particles with individual 
nuclei has primarily resonance character. In those 
papers it turned out to be possible consistently to in- 
clude the vibrations of nuclei in the dynamical theory. 
In this aspect a considerable simplification of the prob- 
lem had been achieved under an assumption that the 
inelastic part of the scattering cross-section by an indi- 
vidual nucleus was large as compared with the elastic 
one - as is the case in most of the situations. A com- 
plete solution of the dynamical problem in a vibrating 
crystal, free from this assumption, has been given in 
a more recent paper (Afanas'ev & Kagan, 1967). 

As has been noted in the papers quoted, all the as- 
pects of the dynamical theory of X-rays, connected 
with vibrations of the atoms, are identical with those 
of the resonance problem if the width of the resonance 

level is large compared with the characteristic energy 
of the phonons. This circumstance made it possible to 
give, in the last paper (Afanas'ev & Kagan, 1967), final 
results for the coefficients of the dynamical theory of 
X-rays. 

Keeping in mind the great interest attached to this 
problem in the physics of X-rays, we give in the present 
paper a detailed analysis of the influence of lattice vi- 
brations, and thus of temperature, on the dynamical 
theory of X-rays and particularly on the effect of 
anomalous transmission (Borrmann, 1941, 1950). 

2. Derivation of general equations 

To describe the electromagnetic field inside the crystal 
we use the usual set of Maxvell equations, as in the 
first paper mentioned (Afanas'ev & Kagan, 1965). 
Converting to space and time Fourier components, we 
get: 

(kE-co2/c2)E(k, co)-k[kE(k, co)]=i ~ j(k, co) . (2.1) 
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Here j(k, co) is the Fourier component of the current 
density, which in fact is a quantum mechanical average 
of the Fourier component of the current density oper- 
ator over the state of the system in presence of an 
external field (cfi e.g. Silin & Ruhadse, 1961). 

In general case the current density operator has the 
form: 

e 
j ( r )= - -2m Z ( ~ % J ( r - r a ) + J ( r - r . ) ~ a ) ,  

~ a = ~ a _  e A,(ra), (2.2) 
C 

where the summation is performed over all the elec- 
trons in the crystal, P~ stands for the ath electron mo- 
mentum operator, and m is the electron mass. 

Very often A,(r) was understood to represent only 
the vector potential of the external electromagnetic 
field. However A(r) includes also a term corresponding 
to zero vibrations of the field, and as will be shown 
later the influence of this term is rather essential. 
Bearing this in mind we shall split .~(r) into two parts 

A(r) = At(r) + Ao(r). 

The treatment of the potential Al(r) connected with 
the external field will be classical. If we set, as our 
gauge condition, the scalar potential equal to zero, 
then the Fourier components E(k, co) of the electric 
field as determined by (2.1) will be given by the relation 

E(k, og) = i ~--- Al(k, co). (2.3) 
C 

On the other hand, the potential A0(r) is a quantum 
mechanical operator and can be conveniently repre- 
sented in the form 

.Z.0(r) = Z" [,A(k) exp(ikr)+.~+(k) e x p ( -  ikr) l ,  
k 

A(k)= 22 TI,dk~, (2.4) 
IF 

(here and later on we set h = 1), where dk~ and ak~ are 
the usual absorption and emission operators of a 
photon with the wave vector k and polarization a 0 b  
is the corresponding polarization vector). 

For the Fourier component of the current density 
operator we have, taking account of the preceding 
relations 

j(k) S {jl(k,a)+ ez . . . . . . . .  e x p ( -  ikra)[~t,o(ra) + Al(ra)]}, 
a m c  

(2.5) 

e [exp(-  ikra)l 'a + t 'a e x p ( -  ikra)]. jl(k,a) = 2m 

(2.6) 

We can now proceed to calculate the average value 
of the Fourier component of the current density, mak- 

ing use of the standard perturbation theory. Here the 
interaction Hamiltonian of the system with the external 
field (in linear approximation in the external field) is 

H ' =  1 Z ( P a -  e -, c [P0(ra) + Al(ra)]} 2 
2m , 

1 e Ao(ra)}z f 
1 e 

-2m a S {[Pa- --c .~o(ra)]Al(ra)+h.c.} • 

Then, utilizing equations (2.3) and (2.5) and preserving 
only terms linear in the external field, we find 

j~(k, co) = 

I e2 . . . . . . . . . . . . . . . . . . . . . . .  
...... i ..... dk,EZ(k,,co){ ~ _ J a [  Z exp{i(k'-k)ra}]00 
(2703co a 

+ 22,22 
s a,a" c o  - -  c o S O ' ~  i -~  

e 4 
+ ~ c 2 Z '  z 22 

$ a ,a  ° k 2 

[exp-{i (k2 ~ k)ra } ~(k2)]os[e-xp{ i ~ ' -  k2)r a i~i* ~2)] s 0 / 
co-  cos0 + i J ] 

(2.7) 

where cos0 = cos-coo. In this expression the bar above 
denotes an average over the initial state; the summation 
over s is performed over intermediate states including 
the excited states of the electromagnetic field. The 
prime at the summation sign indicates that the terms 
for which the intermediate state of the crystal coincides 
with the initial one must be excluded from the sum. 

Let us divide electrons into groups corresponding to 
individual atoms and let us assume that each such group 
vibrates together with its nucleus as one entity. Then 
the summation over a is transformed into a summation 
over n and bn where n denotes the position of an atom 
in the crystal and bn stands for the position of an elec- 
tron inside the nth atom. In this case 

ra = Rn + un + e~ . ,  (2.8) 

where Rn is the equilibrium position of the nth atom, 
un denotes its displacement due to vibrations and ~b. 
is the position of the bnth electron inside the nth atom. 

Using equation (2.8) one can transform the first term 
in parentheses in equation (2.7) to the form 

e__~_ 2 jiz .X exp{ i ( k ' -  k)Rn}(exp{ i ( k ' -  k)un} ) f  n (k ' -  k) . 
m n 

(2.9) 

Here ( ) denotes a thermal average over the phonon 
occupation numbers. The procedure of averaging over 
electronic system resulted in the appearance of the 
atomic form factor f n (k ' - k ) .  
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In complex crystalline lattices it is convenient to 
split the sum over n into a sum over unit cells n and 
into a sum over atoms within the unit cellj. It is evident 
that (exp{ i (k' - k)u,  }) and fn(k' - k) depend only on j. 
Moreover 

( e x p { i ( k ' - k ) u n } ) = e x p { - M ~ ( k ' - k ) } ,  (2.10) 

where M~(k ' -k)  is the usual Debye-Waller factor. As 
a result, we have for (2.9) 

e 2 
- - ( x  exp(i(k'-k)R.})~"F~(k'-k),  (2.11) 
m n 

F~(k)= X exp(ik~l-M~(k)}j~(k). (2.11a) 
J 

Here ~ determines the position of the j t h  atom in the 
unit cell. 

We shall assume for calculations of the second term 
in parentheses in equation (2.7) that the excited elec- 
tronic states which give the main contribution to the 
sum over s are the excited states of the individual 
atoms /z. Accordingly, the intermediate state will be 
characterized by the index /z and by the set of the 
phonon occupation numbers {v} (the equilibrium 
phonon state is characterized by the occupation num- 
bers {v0}). It is obvious that the operator jx does not 
stimulate photon transitions. Then (cf the analogous 
expression in Afanas'ev & Kagan, 1965) we arrive at 
equation (2.11) with O~tFl(k ' - k )  substituted for 

m X exp( i (k ' -k)~j}  F~t(k,k') = -~  j 

^l ^I* t 
~ l l ( k ) ] 0 / ~ [ J l l  ( k ) ]  t ~ o _  ( x  

× [exp(-  ikuj) ~0~,) exp(ikuj) ~v~o)]), (2.12) 

j~l(k) = X j~(k, by). 
bl 

The index/z runs over a continuous, as well as a 
discrete row of values. Having in mind the discrete 
part of the spectrum we have introduced into the de- 
nominator the width F u of the corresponding level. 
For the continuous spectrum Fu-+0. In this formula 
we can omit the phonon term 27 co~(v~-v~) in the de- 

# 
nominator. For the discrete part of the sum over / t  
this possibility is provided simply by the large width 
of the levels, corresponding to X-ray transitions. (F~, 
is larger than the characteristic energy of the phonon 
spectrum cor~.) On the other hand, when summation 
over the continuous part of the electronic spectrum is 
performed, the expression being summed over/z turns 
out to vary only slightly over distances of the order 
of w~n. (It should be noted that here a characteristic 
parameter over which the expression being integrated 
changes markedly is represented by the difference 
co-coe, where coe is the energy of the absorption edge 
of the corresponding transition. Of course, it is pos- 
sible in principle to conjure up a situation when 

co- toe~ co~h, but practically it is impossible to realize 
such a case.) 

Thus omitting X coB(vp-v~) in the denominator of 
¢ 

equation (2.12) and using the relation 

X [exp(- ikuj)](~}~v~ exp[(ik'uj)]~v}~o) 
iv} 

= [exp(i(k'-k)uj)](vO}(vO} 

one finds easily 

F2(k,k') = X exp{ i (k' - k)Qj- Mj(k' - k) }f~tl (k,k ') 
) 

(2.13) 
where 

"t ^l* t m ~at(k)]0u~u( k )]uo 
f~ (k ,k ' )  = 7 Xu co-cou+iJ (2.14) 

In fact J ~  describes the dispersion of the atomic form 
factor; the imaginary part of f ~  is completely deter- 
mined by the processes of photoelectric absorption. 
(For the purpose of simplicity we assume in further 
treatment that [ f ~ l ~  IJ~[.) 

It should be mentioned that a relation, analogous 
to equation (2.12), and the transition to equation (2.14) 
were obtained in Afanas'ev & Kagan (1965) just for 
the case of the resonant scattering on broad lines. It is 
interesting to note that in the opposite limiting case 
Fu~co~ characteristic for the resonant interaction of 
the M6ssbauer y-quanta with nuclei, the temperature 
dependence turns out to be principally different from 
that given by equation (2.13). Instead of the Debye- 
Waller factor M j ( k ' - k )  in the exponent in (2.13) there 
appears a term ½[Mj(k)+Mj(k')] (ef. Afanas'ev & 
Kagan (1965) for further details). 

Owing to the existence of the operator A0, the inter- 
mediate state in the last term in parentheses in equa- 
tion (2.7) will be characterized, in addition to the ex- 
cited state of the crystal (p,{v}) by a virtual photon 
with the momentum k2. Taking it into account, we 
have directly for this term" 

e 4 
X 27 {exp[i(k2-k)Rn+i(k ' -k2)Rn,]  x 

m2¢2 n,n' k2 

( X exp{i(k2- k)eo,})0u(o~ exp{i (k ' -  k2)eb,, })uo 
( E P "  . . . .  

x (exp{i(k2-k)un})l~}{vo)(exp{i(k'-k2)un,))(vO}(v~) 

×[ E [2~(k2)]0.~k~[3~+(k2)]~k,.0]}. (2.15) 
Gr 

Using equation (2.4), one readily gets for the ex- 
pression standing in the square brackets (el e.g. Schiff, 
1955) ( " X [A~(k2)]O.~k~[3to+(k2)]~k2.O = 2-~cZ d~z _ k~_k~ ] 
O" cok2 k~ / "  

(2.16) 
We shall omit the term X cop(v~-~) in the denom- 

P 
inator of equation (2.15) for the same reasons that we 
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had in mind when obtaining equations (2.1 3) and (2.14) 
from (2.1 2). Besides, it is convenient to split 27 in (2.1 5) 

# 
into two parts treating the terms with/z = 0 separately. 
After taking equation (2.1 6) into account this term gives 

2z~e 4 
27 27 { e x p { i ( k z - k ) R n + i ( k ' - k z ) R n ' }  x 

m 2 n,n'  k2 

f n ( k z -  k ) f n ' q ~ ' -  k z)[ (exp {i (k2-  k)un + i ( k ' -  kz)un, }) 

- (exp{ i (k2 - k)un }) (exp{ i (k' - kz)un" })] 

1 6,~ l l 2 I - k E k 2 / k 2  x - - -  ~ (2.17) 
(Z)k2 (2") - -  o9k2 "~- it~ " 

The second term in the square brackets has appeared 
here because the terms with {v}={v 0} must be ex- 
cluded from the sum over {v}, w h e n / t = 0 .  The rest 
of the terms in the sum over/~ in (2.15) give, under 
the same assumptions that were used in obtaining equa- 
tions (2.12) to (2.14), the contribution given by equa- 
tions (2.1 1) and (2.13) with f~/(k, k') having been sub- 
stituted by 

2 ~ z e  2 
f ~  ( k , k ' ) -  27 27 

m u~O kz 

( 27 exp{i(k2- k)~b,})ou( 27 exp{i (k ' -  k2)~b,})uo 
bj X b] 

.... -COe2(~---o9u_ogkz + i j )  " _. 

( " × (2.18) /cl / 

We note that in deriving equation (2.18) as well as 
equation (2.13) the intermediate exited state of the 
electronic system was supposed to be that of an indi- 
vidual atom, so that in equation (2.15) it was put 
n = n' (n,j = n' , j ' )  when/ t  # 0. 

This expression describes an additional contribution 
to the atomic form factor due to the Compton scat- 
tering. 

Direct calculations, taking account of equation 
(2.10), give the following result for the temperature- 
dependent factor in (2.17) 

(exp(i (k2 - k)un + i ( k ' -  kE)Un,)) 
- ( e x p ( i ( k E - k ) u n ) ( e x p ( i ( k ' - k E ) U n , )  

= exp{ - M~(k2 - k) - Mj,(k' - k2) } 
x (exp{Yj j , (k ,k ' ,R . -Rn , )} - l ) ,  (2.19) 

where 

Yy3".(k, k', R n - R n,) _-- ([(k - kE)Unj][(k'- kE)U n, ,, ]) 

= Q0 ~" 9jy'(k,k',k2; c~,q). 2~(~,q)+l 
,,,,, 

x exp{iq(R.,- Rn,)}, 
and 

1 
9J~'(k'k"k2; ~ ' q ) -  2A~Aj  [(k-k2)V~(~,q)] 

[ ( k ' -  k2)V~, (~, q)]. 

(2.20) 

(2.21) 

Here q, c~ are the wave vector and the branch number 
of a phonon; og(cqq), ~(~,q) are the frequencies and 
average occupation numbers of the phonons; Aj is the 
mass of the j th  atom; Vj(~, q) is the polarization vector 
of the j t h  atom in the ~,qth normal mode, f20 is the 
unit-cell volume. 

The fact that equation (2.19) depends only on the 
difference Ro-Rn, permits us to transform equation 
(2.17) to the form of equation (2.11) with the substitu- 
tion of F , ( k ' - k ) 6  it for 

2he  2 
F~(k,k') ........... X 27 {exp[i(k2-k)ej 

m j , j "  k2 

+ i ( k ' -  k2)~j'] ~II,(k,k',kz) x [ 27 exp{i(kz-k)Rn} 
n 

x (exp{Yyj,(k,k',Rn)}- 1)][oh,2(og--o9k2+ir]-l}, (2.22) 

where 
11 t jr(k, k ,  k2) =3~(k2 - k)j~, (k' - k2) 

x exp{ - M j ( k z -  k) 
- M j , ( k ' - k 2 ) } ( f ~ z - M 2 k l / k 2 2 ) .  (2.23) 

F~ describes the contribution to the structure am- 
plitude due to the scattering processes with absorption 
(emission) of phonons (later on we shall refer to this 
scattering as the phonon scattering). 

Thus, the expression in parentheses in equation (2.7) 
is brought to the form 

e 2 
~ (  27 e x p { i ( k ' - k ) R n } ) [ F ~ t ( k , k ' ) + F ~ . ( k , k ' ) ]  , (2.24) 
m n 

where 

F~t(k,k') = 27 e x p { i ( k ' - k ) e j - M j ( k ' - k ) }  
J 

[Ji%.(k'- k ) + f ~  (k, k ' ) + f ~  (k, k')].  (2.25) 

Now making use of the relation 

2re 
22n exp{i(k ' -k)Rn}= £20 Zh J (k ' -kh ) ,  k n = k  + K h ,  

where Kh is the reciprocal lattice vector multiplied by 
2z~, we find 

j~(k, o9)= 27 a~ (k, kn)EZ(kn, og). (2.27) 
h 

Here tr~ in accordance with equation (2.24) is 

i e z 
a ~ ( k , k ' ) -  o900 m [F~t(k 'k ')+F~(k'k ')]" (2.28) 

Now'inserting (2.27) into the initial equation (2.1), 
we arrive after a number of simple transformations at 
the following set of dynamical equations: 

(k~/l¢ 2 -  1)Et(kn, o9) = 

27 giZ(h,h,)EZ(kn,,og) -a t- k~[k~E(kh, og)] (2.29) 
h'  /(72 

where 

4rci n (kh, kh, ) g " ( h , h ' ) =  % 
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_ 4rcr0 [F~) l (ka, kn,) + F~(ka, kn,)] 
tC20o 

~ g g ( h ,  t tt t h )+gr (h ,h  ); it=co~c, ro=e2/mc 2 (2.30) 

We note that in view of the small value of interaction 
between the X-ray and an individual atom the electric 
field inside the crystal remains practically transverse 
so that the last term in the right-hand part of equation 
(2.29) is negligibly small and can be safely omitted. 

Expression (2.30), together with equations (2.25), 
(2.14), (2.18), (2.20) and (2.22), completely solves the 
problem of how the coefficients of the dynamical set 
of equations depend on temperature. In accordance 
with (2.30) the coefficients g,Z are divided into the sum 
of two terms, the first one, g~l, having the temperature 
dependence governed only by the Debye-Waller fac- 
tors [cf. (2.25)]. (In monatomic crystals with one or 
two atoms per unit cell g~t (h, h') ,,, exp{ - M(kh - k~.)}). 
This part of the structure amplitude is connected with 
the processes of the Thomson scattering, photoelectric 
absorption, and the Compton scattering [respectively 
the first, the second, and the third terms of the right- 
hand part of equation (2.25)]. The second term in (2.30) 
g~ is determined by the scattering processes on phonons 
and has, as may be seen from equations (2.22), (2.23), 
(2.20), a fairly complex temperature dependence. If 
g~ is small compared with g~l then the temperature 
dependence of the git coefficients is determined simply 
by the Debye-Waller factors in accordance with the 
expression (2.25) for the structure amplitude. Such a 
result has been obtained by Afanas'ev & Kagan (1965) 
and Kagan & Afanas'ev (1965, 1966) for the case of 
a broad resonant level (equivalent, as we have already 
mentioned, to the case of the X-ray scattering from 
electrons) just on the assumption that the elastic part 
of the scattering cross-section is small compared with 
the inelastic one (which is equivalent to Iggl ~ [g~l D. 

3. Analysis of  the contribution from the 
phonon scattering 

If one compares (2.22) with (2.11a), then one easily 
concludes that IF~I ~ IF1[. As a result, the contribution 
to the scattering properties of the system is small. 
However, from the point of view of absorption the 
picture changes. Indeed, the Thomson term F1 does 
not contribute to the absorption, the latter being thus 
determined only by the rest of the terms in the struc- 
tural factor F~ ~. Therefore the importance of the term 
F~f has to be estimated according to its contribution 
to the absorption. It turns out that in many cases this 
contribution may prove to be comparable to that from 
F~ s and thus it can introduce noticeable corrections 
into all effects in which the absorption is essential, and 
particularly into the effect of anomalous transmission. 

In crystals with one atom per unit cell the absorp- 
tion is determined simply by the imaginary part of the 
structure amplitude, and in complex crystals by a corn- 

bination of the form 

flU(k, k') = ½[FiZ(k, k') - F~t*(k', k)]. (3.1) 

Now, ff~z will be determined by equation (2.22) with 
the substitution of (o9- cokz + i5) -1 for - ireS(co- o)k2 ). 
It is this part that we shall be interested in in later 
discussion. Before going into its analysis we shall con- 
sider the physical nature of the additional absorption 
appearing in the dynamical problem in the vibrating 
crystal. 

Let us consider, for simplicity, a crystal with one 
atom per unit cell. In this case the structure amplitude 
(2.25) of the rigid lattice may be directly shown to be 
simply proportional to the amplitude for elastic scat- 
tering of a photon by an individual atom. 

In the dynamical problem only the amplitudes for 
true elastic scattering must play an important role. 
This explains why in the case of a vibrating lattice the 
factors of the form e x p { - M ( k - k ' ) }  appear which 
characterize the probability that phonons are not ex- 
cited during the scattering process. However, this does 
not cover all the role that lattice vibrations play. 

The fact is that even in the case of a pure elastic 
scattering by an isolated atom the amplitude for elastic 
scattering at zero angle has an imaginary part due to 
the well known optical theorem. In a rigid regular crys- 
tal the imaginary part of this amplitude turns to zero 
in the absence of absorption. In the presence of lattice 
vibrations inelastic scattering by phonons changes the 
amplitude for elastic scattering resulting in a partial 
reappearance of the imaginary part. In the limit of high 
temperatures the imaginary part of the scattering am- 
plitude reaches a value corresponding to that of an 
isolated atom. It is this circumstance that explains the 
presence of the additional term F~. 

We now turn to expression (2.22) and separate out 
of it the term with n=0 .  We expand (exp Y j l , - l )  in 
a series in terms of the powers of Yjj, and confine 
ourselve to the first non-vanishing term of the series. 
As a result we get 

f f g ( k , k ' ) = - i  -2-~-2e2 Z" Z" (exp{i(k2-k)oj 
too9 j , j '  k2 

• t l l  t t + l(k -- k2)oy])~,,(k, k ,  k2){(exp[ Yjy(k, k ,  0 ) ] -  1) 

+ Z Y j j , ( k , k ' ,Rn)}5 (w-wk2  ) . (3.2) 
n # 0  

In our further treatment we consider only the case 
when the wave length 2 of X-rays is small compared 
with the distance a between atoms, that is when 

2/a,~ 2n . (3.3) 

In this case the contribution to ffg(k,k') from the 
first term in parentheses in (3.2) is determined mainly 
by the terms with j = j '  in the sum over j , j ' .  The rest 
of the terms in the sum will give only a small contribu- 
tion, if the condition (3.3) is satisfied, because in these 
terms there remains a rapidly oscillating phase factor 
of the form exp{i(k2- k)(~j-eJ ' )}  in the sum over k2, 
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and therefore these terms can be safely neglected. As 
a result, we find the following expression for the part 
of g~ connected with the first term in parentheses (3.2): 

4zrr~ 
g~)'l(h'h')~-i ~o~  27 exp{i(kh-kn,)~j} 

y 

× f A ( k -  kh)J~(kh,- k)(~"-/d/d/k2) 
i v  

x [exp{- M i e n " -  kn)} 

dI2k[ (3.4) --exp{-- M ~ ( k - k n ) -  M~(kn.--k)}] 4re k=,¢ 

In obtaining (3.4) we went over from the summation 
over k2 to an integration, and also have made use of 
the relation 

Mj(k2-  k) + M j ( k ' - k 2 ) -  Yjj(k,k ' ,0)-  M j ( k ' - k ) .  

For crystals with one atom per unit cell (in this case 
e j=  0) the expression (3.4) is naturally exact. 

We note that if all of the atoms vibrated independent- 
ly, then the second term in (3.2) would turn to zero, 
and g~ would be strictly determined by the expression 
(3.4). Thus, the second term in (3.2) reflects a coherent 
character of the inelastic scattering of X-rays by 
phonons. The contribution of this term under the con- 
dition (3.3) is in practice always less than the contribu- 
tion which is determined by the first term. It must be 
pointed out that, as we shall see later, this term 
is essentially singled out in its value. However, the rest 
of the terms in the expansion of the exponent in a series 
in terms of Yjj, give a negligible contribution when 
n # 0 .  

We transform the second term in parentheses (3.2) 
as follows: 

P~)U(k, k') = 

- i 2nZeZmoo P~(k, k',Kh,,) - (2g) 3 

where (3.5) 

P~t(k,k' ,kz)= 27 27 { e x p [ i ( k z - k + q ) ~  
o~q j j ,  

+ i (k ' -  k z -  q)~]~ , (k ,  k', kz +q) 

2~7(e,q)+ 1 6(oo--OOka+q)}. ×tpff(k,k ' ,kz+q;  ~,q).  -~(~,q) 

(3.6) 
In those cases, when k ' # k ,  P~t(k,k, k2) is a smooth 

function of kz, and if the condition (3.3) is satisfied, 
then the sum over h" and the integral in (3.5) com- 
pensate each other to a considerable degree. In this 
case one can neglect the term (3.5) and then g~(h,h') 
at h # h' is described with good accuracy by the expres- 
sion (3.4). 

If  k ' =  k, then the terms with kn, will be singled out 
in the sum over h", and these are the terms which are 
responsible for the Bragg reflection and for which the 
following condition is satisfied 

k~,,~_k 2 . (3.7) 

We preserve only these terms in (3.5) (the remaining 
terms will be compensated by corresponding integrals 
as was the case in the preceding treatment). If the 
condition (3.7) is satisfied, then the main contribution 
to P~t, when the summation over ~,q is performed, 
comes from the region of small co(~, q), that is from the 
acoustic vibrations with small q. Owing to this circum- 
stance we can set q = 0  in the first and in the second 
factors of (3.6) and change ~0ff(k,k',k2+q; ~,q) and 
2p(~,q)+l respectively for ~0~j.(k,k',k2;~,q) and 
2T/oo(o~,q). Besides, the polarization vector V~(0~,q) of 
the acoustic modes is connected with the polarization 
vector V(0q q) of the sound wave by the relation 

Vj(oe, q)=(Aj /A)~V(oqq)  ; A =  .S Aj . (3.8) 
1 

As a result, we obtain 

F~"(k.k')  = 

{ ( " )  - i .2n--2-e2.- .S I FI(Kh,)I 2 6 u -  kh,kh, T 
moo h" " ~ .  " - X  

I d q }  Jkk'" IKh,,V(~',q)l' ~(OO__O~h,,+. ) (~Z~)~ × S~, ~2(~,,~ -- 
(3.9) 

Here ~' labels only the acoustic modes; the summation 
over h" is carried out only over the reciprocal lattice 
vectors, satisfying the condition (3.7). 

The appearance of the term (3.9) is connected with 
the existence of the anomalous diffusive scattering in 
the vicinity of the Bragg peaks. The right hand part 
of (3.9) is proportional to the total cross section of 
the one-phonon scattering near the Bragg angles. The 
intergration over dq in (3.9) leads to a logarithmic 
divergence at q--~0. This fact is in complete corre- 
spondence with the behaviour of the anomalous dif- 
fusive scattering difference cross section, which is 
known (see, e.g. Landau & Lifschitz, 1957) to be pro- 
portional to 1/O 2, where O is a scattering angle meas- 
ured from the direction corresponding to the Bragg 
scattering. In order to avoid this divergency one must 
take into account that at small O the motion of the 
scattered wave bears a dynamical character; in other 
words, the state into which the wave comes as a result 
of scattering is not that of a plane wave but rather a 
superposition of plane waves in accordance with a solu- 
tion of the dynamical set of equations (2.29). 

Having taken this into account, we are led to the 
conclusion that the expression being integrated in (3.9) 
preserves its form only for O > qmin/k where 

qmin = klgo(h, h)l (3.10) 

and the region of smaller q, now having no divergency, 
gives a negligible contribution. Cutting the integration 
over dq in (3.9) at the level qmin, we find for the part 
of g~ connected with (3.9): 

6zrro 2 [ T g~)U(h,h')= --~o~- ~h£h IFI(Kh')I2" AC ~ 
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T 6~rr°2 [F~(Kh')I2 " $4c~ g~)U(h'h')= l~o~ h'~¢h 
kh2" t t 2 } , (3.11) X -i¢2- ln(qo/qmin)(Ja- kh,kh./kh. ) Jn, n" 

where q0 is a value of the order of the limiting mo- 
mentum of phonons and 

1 Ii '~ [nh.,V(~', (p)[ 2 d~o (3.12) 
= 2 - =  

The integration over d~o in (3.12) is carried out over 
all directions perpendicular to the vector kh,,, c(£,~) 
is the velocity of sound of the a ' th acoustic branch in 
the corresponding direction, and nh, = Kh,/Kn,,. 

Thus, the final expression for g~ has the following 
form: 

g~(h,h')~-g~)U(h,h')+g~)"(h,h') , (3.13) 

where g~)tt and g~)" are determined by equations (3.4) 
and (3.11) respectively. 

It should be noted that in the case when the condi- 
tion (3.3) is not strictly satisfied and at not very high 
temperatures, a linear expansion of the exponent in 
the first term in parenthesis (3.2) may prove to be a 
good approximation. In this case ff~( is determined 
simply by the first term in parenthesis (3.5). 

Expression (3.13), being approximated, has never- 
theless the advantage that all of its constituent parts 
can be directly calculated in a comparatively simple 
way. 

For a numerical calculation of g~ in this approxima- 
tion one has to know only the atomic scattering am- 
plitudes, the Debye-Waller factors, as well as the elastic 
constants for determination of c~. As a rule, all these 
values are known accurately enough. On the other 
hand, an accurate calculation of g~ with the help of 
equations (2.30), (2.22) and (2.20) demands detailed 
information about lattice vibrations, and in particular 
it needs the knowledge of polarization vectors of the 
normal modes for all the range of wave vectors. 

4. Influence of lattice vibrations on the effect 
of  'anomalous transmission' 

The results obtained above make possible a complete 
analysis of the problem of 'anomalous transmission' 
of X-rays through a crystal with a vibrating lattice. 
As usual, we restrict ourselves to a case in which only 
one Bragg reflexion (with a corresponding vector K~ 
of the reciprocal lattice) exists, and we consider only 
the polarization 11 perpendicular to the plane of scat- 
tering for which the effect of 'anomalous transmission' 
takes place. In this case the dynamical set of equations 
is confined to a set of two equations for corresponding 
amplitudes of the electric field with scalar coefficients 
of the form 

g(h, h') = rffrltgit(h, h') , h, h' = O, 1. 

For the sake of simplicity we further restrict our 
treatment to the case of a crystal with either one or 

two similar atoms in a unit cell and we choose the 
reflexion in such a way that in the case of two atoms 
in a unit cell exp(iKlej)= 1. We shall consider a sym- 
metrical reflexion and in addition we assume that the 
plane of reflexion is one of the crystal symmetry planes. 

The latter assumption simplifies the analysis to some 
extend since in this case it is always the case that 

g(0,0)=g(1,1) ,  (4.1) 
g(0,1) =g(1,0) .  

In accordance with the results of the preceding sec- 
tions [see equations (2.30), (2.25), (3.13), (3.11), (3.4)] 
we get, having taken into account the restrictions made 
above, 

4nr0 
g(0, 0) = - ~0~i [f(0)+J~(k, k)+j~(k,k)]+ i/zr(k,k)fi¢, 

(4.2) 

g(0,1) . . . .  4~r!  [f(Kl) +f2(k, kl) +3~(k, kl)] 
I20x 2 

× exp[ -  M(K1)]+ ipT(k, kl)fic , (4.3) 

J~, 3(k, k') = rffr/tf~13(k, k ' ) .  (4.4) 

The last terms on the right hand side of equations 
(4.2) and (4.3) are connected with inelastic scattering 
of X-rays by phonons and are determined as follows 

/zT(k, k') =/t~)(k, k ') +/t~)(k, k ' ) ,  (4.5) 

p~)(k, k') "~ 4rcNor~ I f ( k z -  k ) f ( k ' -  k2)( 1 - 01k2)2/k 2) 

x (exp{ - M ( k ' -  k)} 

- exp{-  M ( k 2 -  k ) -  M ( k ' -  k2)}) dt2kz .... 4~ [k2=~, (4.6) 

4T 
p~)(k,k') _ Jk~'. 6zcNor~ sin20B. 

A4 
xf2(K1)exp{-2M(K1)} ln(qo/qmin). (4.7) 

Here No is the number of atoms per unit volume; 0B 
is the Bragg angle. 

The expression for the coefficient of anomalous ab- 
sorption is known to have the form 

p ,  = x[g"(0, 0) - g"(0,1)] 

where g" denotes the imaginary part of the correspond- 
ing coefficient. Then, taking account of (4.2)-(4.7), we 
find 

l ta=( l t2+I t3) (1-eoexp{-M (K1)})+PaT. (4.8) 
Here 

4rrro . 
/ z2 '3=-  ~20x fl.3(k,k) 

are the absorption coefficients of X-rays which are 
determined by the photo-absorption and the Compton 
scattering respectively, and 

f~(k, k~) +f~(k, kl) 
e0= -f~(k,k)-~-f~(k,k) " 

The contribution to the anomalous coefficient of ab- 
sorption which is due to inelastic scattering by phonons 
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is determined by the expression 

/zar = ~ ) ( k ,  k) - p~)(k, kl)] +/z~)(k, k) .  (4.9) 

Thus, the result (4.8) contains contributions to the 
anomalous coefficient of absorption from every of the 
most essential processes of X-ray interaction with mat- 
ter. This expression clearly shows that the absorption 
connected with the photo-effect and the Compton scat- 
tering have the same temperature dependence. (We 
note that the Compton scattering cross-section in the 
commonly used range of X-ray energies is as a rule, 
small compared with the photo-effect cross-section.) 
Such temperature dependence of absorption in the 
problem concerned with the anomalous transmission 
has for the first time been consistently derived by the 
present authors (Afanas'ev & Kagan, 1965) and inde- 
pendently by Ohtsuki (1964). (The situation considered 
in the paper by Afanas'ev & Kagan was equivalent to 
the case when e0 = 1). 

The second term in (4.8) has quite another depen- 
dence on the phonon spectrum and on the temperature. 

Generally speaking, this term is as a rule small com- 
pared with the first one. Nevertheless, its contribution 
to the total coefficient of absorption is rather impor- 
tant, being greater than the error with which /za is 
measured. 

For example, in the case of reflexion from the plane 
(220) in monocrystalline germanium the magnitude of 
the second term in (4.8) is approximately 470 of that 
of the first for the line Kel of copper (it = 1.5405 A). 
In a recent paper by Efimov (1968) refined measure- 
ments of the anomalous absorption coefficient tern- 

perature dependence have been carried out for this 
case. As was shown by Efimov, the account of the con- 
tribution from inelastic scattering by phonons markedly 
affects the analysis of the relevant experimental results. 

It is interesting to emphasize that the relative impor- 
tance of/ZaT sharply increases with the increase of the 
ratio between the elastic scattering cross-section and 
the cross-section of photo-absorption. This circum- 
stance provides interesting possibilities for carrying out 
experiments in which the first and the second terms 
in the anomalous absorption coefficient (4.8) are of 
the same order of magnitude. 
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Ewald's and yon Laue's Dynamical Theories of X-Ray Diffraction 
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Ewald's and von Laue's dynamical theories of X-ray diffraction are discussed. Ewald derived the 
dispersion equations with a microscopic theory (classical electron theory), whereas von Laue used a 
phenomenological macroscopic approach (MaxweU's theory). As is to be expected, the dispersion 
equations of the two theories agree if one chooses the same physical model for the electromagnetic 
resonators, i.e. point dipoles or atoms. 

Introduction 

Only two years after the discovery of X-ray diffraction 
in crystals, Darwin (1914) pointed out that von Laue's 
kinematical theory (yon Laue, Friedrich & Knipping, 
1912, 1913) does not give the correct intensities at the 
interference maxima. He furthermore developed a very 
elegant, although limited, method for the understand- 

* On sabbatical leave at the Fritz-Haber-Institut der Max- 
Planck-Gesellschaft, Berlin-Dahlem, Germany. 

ing of X-ray diffraction in perfect crystals. In order to 
derive a self-consistent dynamical theory of X-ray dif- 
fraction in perfect crystals, Ewald (1917) used some 
of the results of his theoretical treatment of the dis- 
persion and double refraction of light in crystals 
(Ewald, 1916). The theory is based on the classical 
electron theory. Lohr (1924) avoided any atomic theory 
for crystals and published a dynamical theory of X-ray 
diffraction which was based on Jaumann's continuum 
theory. It is here only assumed that the crystal has an 
atomic structure. However the treatment is very com- 


